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THE VISCOSITY OF A PLASMA IN A STRONG MAGNETIC FIELD
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The viscosity of a plasma is studied under conditions in which a
magnetic field influences particle collisions. The expressions ob-
tained for the viscosity coefficients differ significantly from those
obtained in the normal theory, It is shown that in sufficiently strong
magnetic fields a temperature difference arises between the electron
and ion plasma components which is proportional to the drift velocity
and depends logarithmically on the magnetic field strength.

1. We shall consider a plasma flux in a uniform
constant magnetic field H. If the average mass flow
velocity vy is a function of the coordinates, then
stresses will arise caused by the transport of par-
ticle momentum.

Knowing the velocity distribution function of plas-
ma particles of type @, jf(r,ve,t), we can find
pressure tensor:

P = S M (Va = Vo)i (Va — Vo) fa (¥, Vat) dva.  (1.1)

The function f,, is the solution of the kinetic equa-
tion:
of,

ot
—t+Vm'5F+Qa(hXVa)

a H
To oy Q=2 (12
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Here Ig is a term describing particle collisions;
)y is the Larmor frequency; h is a unit vector di-
rected along the magnetic field.

We shall consider that fy does not differ radi-
cally from the Maxwell function and may be repre-
sented in the form

Jo =[O (1 4 @) (?, 1), (1.3)

Here f,,(0) is the "local® Maxwell function:
’ ﬂlct /2
fa(O) = Ng (I‘, t) (m) X

X exp {—ﬂ%lvn‘—vf) (r, t)]2}~ (1.4)

Then, with account for the fact that ¢ < 1, the
kinetic equation (1.2) can be linearized.

Passing to a system of coordinates moving with
velocity v;, we can reduce this equation to the fol-
lowing form after fairly straightforward transfor-
mations:

T pivaiitfa® = — Q4 (Va X h) Da 10+ Iy(@) (1.5

o7 Yai ajCij fo(® = — a( a X v, fal® + S’( ) (1.9)
vy, Iy, 2 .

efio":_a?i_ +?:ii—§6u~d1vvu. (1.6)

Here Igt (®) is the part of the collision integral
linear in ¢, eijo is the drift velocity tensor.

In all preceding papers on the theory of viscosity
coefficients, either the classical Boltzmann collision
integral (see, e.g., [1-3]), or the Landau collision in-
tegral (see, e.g., [4])! has been used for Iy ($).
Neither of these forms of the collision integral is
applicable under conditions when the Larmor radii
of the particles become legs than the radii of their
effective interaction region.

Recently, a series of collision integrals i7-9} was
obtained which enables one to consider transport
processes in fairly strong magnetic fields when the
Larmor radii of the particles may be less than the
dimensions of their effective region of interaction.

We shall employ the following form of the col-
lision integral (see [10])

3
Iy (@) = 5~ 21 Jas s (1.7
@ gyt

=g,

where

I T T S
ot [ s 2

X fafp €xp [ik (S — 1) (r —1g)] dvy.

Here Tyax is the maximum particle interaction
time, S(;'_) is an operator which replaces the dy-
namic variables of particles situated in a homo-
geneous magnetic field by their values after a time
7, assuming the particles to be noninteracting.

2. We shall seek a solution of the kinetic equa-
tion (1.5) in the form

Dy = O weitwaj (w, = (2T /m ) ,) (2.1)
(W is the dimensionless velocity).

The tensor 4/10; must be linear in the disturbance
eij". It is easy to show that if we have the pseudo-
vector h, we can form only the following six inde-
pendent mutually orthogonal tensors of the second
rank linear in e°:

Qi@ = hilihuhe,.”, Qui® = o (Biejun -+ S hotyn®,
Qi = (6#6}\, + 1/26i,vihphv) €’

Qi = (b2 + hihieiy,) by ey,

Q@ = By Thihy + SFhihy) €,,°,

Q4 = 8 hyhey,® Byl =8, — hihy). (2.2)

!We are talking about collision integrals for pair in-
teractions. The influence of collective effects on trans-
port phenomena was considered in [5, 6].
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Here Eij'y is an antisymmetric tensor. All these
tensors, with the exception of Q(o) and Q (5), are
nondivergent, i.e., they have a trace equal to zero.
Thus,éi-(a)is a linear combination of these six
tensors:

]
Do = — X 020 QPwgiy; - (2.3)

p=0

‘The coefficients b(F) are, generally speaking,
functions of w%z. We shall, however, consider them
independent of velocity, which corresponds to the
first approximation in the expansion of these coef-
ficients in a series of Laguerre polynomials.

Setting (2.3) in (1.5), we obtain, after multi-
plying by w aiWajdVa and integrating,

eﬁo =Q, (2ba(1')0i1.(3) + bu(z)oij(4) — 2ba(3)Qij(U _ bainj(z)) +
2 T
t a2 (9ags) nBS ] S dv S dwedwy X
7 p=ei 0
X exp [—wg® —wp? + ik (S0 — 1) (r —rz)] X

5
X (Waiky -+ waski) ) QS0 x

p=0

m \ "
x[ba(f”wa}— (,EE) bgt®) war]- (2.4)
8

We represent the action of the operator S, ) on
the dynamic variables in the form:

5wy = (hihy, 4 sin QuTeimzhy -+ €08 QT0im L) wom, (2.5)

S Org; = SS,AO)waidr’. (2.6)

¢

After this, we carry out the integration over ve-
locities in the collision term in (2.4). Writing e°® in
the form

e = QO + QU 4+ Q@ — 1,00 (2.7)
and using the orthogonality property of the tensors
Q(p), we obtain '

1= 2 2 .(91‘19)2 ng {ba‘® [— Ly°P (91291272)+ 2K,%P]—

nm,T Pl
—2bo B Lo 2Q, T sInQyT)— 2.8)

— pﬁ%‘f [5g L% (Qa Qut?)+ 2b5® Ly28 (Q, v sin 1)1} ,
8

1
2

I

nmz T D) (gagp)? n {ba'® [— Ly2B(p,2Q, T sin Q7)1+
a” f—e,i

-+ 2ba(5) [KIGB (COS Qu-r) —_ 2L2uﬁ (paz sin? QQT)] _

— pa? [5p® Ly%B (QaTsin Q) +

+ 4bg®Ly%8 (sin Q,7sin QgT)]} (2.9)

2
1= —2Q,M,+ T Z (9agp)’ne x
& B—e,i

x {— 20Ky (oxp [ (3 Qur)]) +

8p,2¢q, L Q. Qg o Q, +Q ’
-+ “qﬂ MgL,eP (sm —5-sin —g exp{z (-’21 - -“—2—-1 T)J)+

g;r exp l:i (—;‘— — Q,T)])} , (2.10)

Q2

+ B 2M L2 (sin=

2 .
I=—QuNo+ ?ma(_Tamze . (7aga)? nB{lNa [942L315 (
Q
-+ 2sin?® %T cos Q,7 -+ Q. 7sin Q,7) — K*® — K,%8 (cos Qaft)}-iv

QT Q.1
+ N, [ZPJLs“E (sin2 —; sin Q,T + Q,Tsin? T"—) —
gugﬁtz Q x
in —<%_ X
7 - 2sin )

2
— Ky (sin Qq7)]+ -"q—q— [iNBL,,“B (
[

. Qgt Q,+Q QT Qg7
X sin %cos“—zir-i— %smgﬁr + —g~sinQar)—}—

Q Q Q Q
+ 258 (sin ~a sin "% sin 2t r)]}

5 5 (2.11)

(Mo = b® 4 ib0), N, = b® + ib@).

The integral operators LiaB are given by the rela-
tions
dk T et 1 ¢ dk
Lit= TGkt { duees, Lyt = ¢ G bt x
1}

“max . i dk “max
X S dte‘“"ﬁ,L3“B=—2-SFkJ_2k”“’ S dre'als,
[1] 0.

The integral operators Kflﬁ are given by the rela-
tion

*ma

X
Ky = ( Sk { dve'ss
0

*max
Ky = (Gekey? { dvetets
Q

Q 213 Q1 1 2T\
te = ’(k’ e kﬂiz—“), o= o (V" 212
a= 0t (B® RO ), =g ()" @.12)

m

Here p, is the Larmor radius of a type a par-
ticle, k il and kL are components of the vector k
along and across the field, respectively.

The system of equations (2.8)-(2.11) differs from the equations
obtained in the usual theory, when the influence of the magnetic
field on collisions is not taken into account. The distinctive feature
of collision integral (1.7) lies in its explicit dependence on the mag-
netic field. This dependence manifiests itself in the fact that the
operation of the collision integral on any of the Q(P) tensors gives
still another tensor, in addition to this one. However, as before, the
disturbance may be resolved into three independent pars: Q(? and
@, W and Q®, 0@, and 0¥, In the usual theory &, is sought
in the form of an expansion into five, not six tensors (see, for example
[4]). In point of fact, this means that only five coefficients in the
expansion (2.3) are independent, In the usual theory the coefficients
bz(o) and b are connected by the relation

ba®® + 26, =0 (2.13)
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This is obvious if one considers that the viscous stresses arising
from a plasma disturbance described by the tensors o and @ are
the same in normal theory as in the case without a magnetic field.

As is clear from Egs. (2.8), (2.9), the magnetic field does not exert
a direct influence on these disturbances in the sense that there is no
term associated with the Lorentz force. Thus, in theory, with an
isotropic collision integral both these disturbances are identical and
are described by the one viscosity coefficient. Our collision integral
depends explicitly on the magnetic field, and so introduces an addi-
tional anisotropy. One may expect the plasma disturbances described
by tensors O™ and O to be characterized by different viscosity
coefficients. This means different momentum relaxation times along
and across the field (cf.[9, 11]), if the form of O® and Q) is taken
into account.

3. Using the system of equations (2.8)-(2.11), we
find a solution of the kinetic equation (1.5) with an
accuracy to the function

Do’ = a0 + YyaOm,p,t (3.1)

which reduces the right-hand side of (1.5) to zero.

The coefficients a, (t ) @) are determined from the
following equations, wh1ch are a consequence of the
fact that the zero-th approx1mat10nf completely
determines the density and temperature of the plas-
ma at a given point

gfaw) ((Dcz + (Da’.) dv, =

2
- 250 @ o0 an =0, G2)

It is not difficult to verify that these requirements
are satisfied if

a® =0, gV == 1y (0, 4+ 25,5} hyhoey,”

and we impose the condition

ST g (ba® 4 25,0) = 0 (3.3)
B=e,i

on the coefficients bo(zo) and bo(f).
After this, we can find stress tensor

) = S 720 (Do + Do) Maaipaidve = W™ -+ Apedy;  (3.4)

from which the nondivergent part has been separated:

e

nij'(a) = —

1P Wyi®).

p

il
o

The second term in {3.4) is a correction to the
hydrostatic pressure:

Apa = 1/3n2T (ba(o) + 2ba(5)) . (35)
® B

The viscosity coefficients 1, " and tensors Wij
are determined in the following manner:

060 = (6" — b T, 1P =, T5,*  for p0

W O = (hh - /3 1])h hvep.v N W ® Q (p) fOI‘ p+0.

4. The system of equations (2.8)-(2.11), together
with (3.3), allows one to find the viscosity coef-
ficients.

13

a) Coefficients ng}). We shall consider the case
when the magnetic field is so small that we may
neglect effects associated with the finiteness of the
Larmor radius. Then, assuming that the magnetic
field in (2.8)-(2.9) is equal to zero, we obtain the
well-known equations for the viscosity coefficients:

5n,T 5n; T
0) or . Y%e® 0) e TR
e w, (it Rmr,y G,

R =

1 ;
zVZ’ lqe

. &V gty
3 V,;; T

Yo WU e e S
1 vE

Here z isg the ionic charge, the superscript® desig-
nates quantities relative to ry i, for example, rp* =
= I‘D/I‘min.

Now let us give further consideration to the case
when during the collision process, the magnetic field
exerts a significant influence on the motion of at
least one of the interacting particles. The expres-
sions for the viscosity coefficients become more
complicated and with logarithmic accuracy, have
the following form:

1-1
m<o>=92f [( L R)lnp* —Hl rp-’:’j p,<€rp) (4.3)

P <<rp). (4.4)

5n;,T
'qi(O) v, i

45 . rp |t
EUES LS
We shall calculate the mean energy of random

motion (temperature) of each of the plasma compo-
nents:

'g"naTa = -é*&fa(”’mava?dva =
= 20T — T (bl 4 25.9) hyhye, . (4.5)

With (2.13) in mind, we come to the conclusion
that the temperature of both plasma components in
a weak magnetic feild is the same.

In a strong magnetic field the relation (2.13) no
longer holds, and consequently, in agreement with
(4.5), the electron temperature will not be equal to
the ion temperature:

5T Agh ke

r,—T,= Py’ (4.6
CT T v A (Inp ¥+ A (4.6)

At the same time, the pressure of the plasma
components also changes (see (3.5)). The following
notation has been introduced in equation .6):

AD = qnpy? (P75}, {4.7)
_\H) = In ,0 ‘, e ln ;,51?_ (rn<p,i) ) (4.8)
s
";n;-—.;*‘lfi In 2 o >rp30 3 m u,m‘} £9)
My . Lo 2 ¢ m j
Ap = i in -: Inpfre* + —%—hx I:% 1 :[Ui
(pi>rp>ro>p,), (4.10)
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Ag = —é—lnz Inpt*r,* (P> ro>rp>p,), (4.11)

Pe
T O TO0c SO O 3
Ay = 5 In o lnme + 5 In o In s
( % >rD>p>pe>ro> (4.12)
_ 4 Py m; 1 miPi
A. —“2—111 E—ln m—e+-—8—-ln2ET—D—
( >P;>Pe>7'o) , 4.13)

Ao-————ln——lnpe*ro —|——ln —l ;—{—

5 In 2 ( Vi pi>rp>pi>ro>p,),<4.14)

Pi M Tp Vm,

=Ly e st . L p Mgy P
Ag = 7 lnTe-lnpe re* + 5 lnmeln F‘o+

mipg

1,
gt e

(rp> 1‘;’ ) >Pi>ro>p=) (4.15)

*fy s =
o= 10 2 In prp” {'o PUERS TS0 (g 1)

n>rp>p20,
A =Llnilnr* *-|—lnr—Dln 220
0 A Pe 1 Pe " Qi V?"l
(pe 2 ->pe), (4.17)
b
Ao = ln o L In ry*p,* —|——2——ln2 %%]
(ro>e. [5e|>r>e>e) . (4.18)
T

b) Coefficients n&) and n(4) The coefficient
7)(4) does not depend on the collision frequency in
the first approximation:

Ne'¥ = —

For the coeffmlent 'n( ) we obtain

4n,Tv 1 3
= 25 (5 + g5 B) Inro*

€

(0, >rp), (4.19)

(Pi>'p) . (4.20)

6n;Tv;
Tli(z) == —5911—23 In rD*

For stronger fields we have

3neTv,
4n57;ve (_%_F%R)ln p* - nm; Ay, (4.21)

€

ne(z) =

where A, depending on the magnetic field strength,
and the density and temperature of the plasma, has
the following form:

: r
A=Inli) 2
Pe

me

(i > rp>p.>r0),

A=InTin 2 gy (s> rp>1050,),

ro
Lo Jnrp¥pe*
Mg Pe Pe b pe

1 'p
A= Tln —p:ln rp*p,*

(P ro>>rp>>0,),

A1=—_——1n2 +——1n——1nrp*pz (rp>>pi > p,>> o),
Ay=In 2% +—In lnpe*ro +——ln~lnrp*p, ,
(rp>p>r>0,),

A=—In o Inrp*p* 4 - 1ﬂ—ln’D P,

(rps To2>p; 2 p,). (4.22)

Ion-ion collisions make the main contribution to
the viscosity coefficient 'r,i(z). In the case when the
ion Larmor radius becomes less than rpj we obtain,
instead of formula (4.20),

Bv,

i = STy o (4.23)

c) Coefficients na“) and na(g). The coefficient
na 3, as in [4], does not depend on the collision
frequency:

(3) el 4.24
Na = — 29‘1 ( . )

For the coefficient na(i) we obtain
N = %natz) (0> 7p). (4.25)

For stronger magnetic fields we have
1 3 1 Gy
MY = g—:—,: ln p * [‘2— +gg R+ R (% + VZn)]
(Pe<€rp) (4.26)

mu):g%lnpi* [%+_1%(_;L+V§R)] (pi<<rp), (4.27)

A few words should be said about the values of
quantities conditioned by the influence of a strong
magnetic field on particle collisions. We shall con-
sider, for example, the log-log contributions repre-
sented by formulas (4.22). We note that the first
three formulas of this group hold when p. << rp < p;,

e., for a hydrogen plasma on fulfillment of the con-
ditions

1<€41400H [V n <€ 43 (4.28)

Here H is the magnetic field in gauss, n is the
density. The last three formulas from group (4.22)
are valid on condition that

peLp;Lrp,
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i.e.,
H/Vn>041.

The plasma temperature determines the quanti-
ty ry = 3:10-4.T~1, where T is the temperature in
electron volts, and thus distinguishes different par-
ticular cases from (4.22).

As an example, we shall consider a plasma with
density n ® 1010 em~3, situated in a magnetic field
of tield strength H = 104 gauss at a temperature of
1eV.

In this case rp ~ 0.7-107% cm, pg ~ 0.17:107°

cm, Umin ~ 0.74-10-% cm and Ay ® 28.0, while the
Coulomb log equals 10.6. Hence it is evident that the
corrections due to taking the influence of the mag-
netic field on particle collisions into account exceed
the Coulomb log obtained in the usual theory by a
factor of more than two.

It is clear from the expressions cited above for
the viscosity coefficients that the plasma viscosity
manifests itself in a substantially different way in a
strong magnetic field that affects particle collisions.
For example, a temperature difference develops be-
tween the electron and ion plasma components pro-
portional to the drift velocity hy hy, ewf and depend-~
ing logarithmically on the magnetic field (4.6).

In conclusion, the author thanks V. P. Silin for

proposing the subject and for much useful discussion.
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